Hybrid funtional calculations of MXene

SNIC 2017/1-141


SNAC Medium

Principal Investigator:

Martin Magnuson


Linköpings universitet

Start Date:


End Date:


Primary Classification:

10304: Den kondenserade materiens fysik

Secondary Classification:

20501: Keramteknik

Tertiary Classification:

20702: Energisystem



In the quest for new 2D materials outperforming graphene, research on other more advanced 2D materials has intensified greatly. The purpose of this proposal is to clarify what key factors of surface and interface bonding affect electronic transport properties of a new class of two-dimensional (2D) transition-metal carbides and nitrides called MXene. These semiconducting stacked Mn+1Xn (M is a transition metal and X is either carbon or nitrogen) nanosheets are emerging materials with large technological impact for applications in Li-ion batteries, super-capacitors, fuel and solar cells as well as in 2D-based electronics and transistors. How should the stacked Mn+1Xn layers in MXene optimally be terminated to optimize different applications? The ultimate objective is to be able to tune and optimize the semiconducting and electronic transport properties of MXenes by investigating the influence of the functional -O, -OH, -OH2 and -F termination groups Tx, and intercalated ions (Li, Na and K) at the interfaces between stacked Mn+1Xn nanosheets. In this project, relaxations and SCF calculations using VASP and Wien2k are made for the novel 2D materials MXene with different types of termination groups, including -O, -OH and -F. The calculations are compared to existing experimental data produced in fruitful collaboration with my PhD student Joseph Halim, who will defend his thesis at IFM at the end of 2017. Presently, we are working on several publications and need more time to finish the calculations.