SNIC
SUPR
SNIC SUPR
On-surface synthesis of organic nanostructures
Dnr:

SNIC 2017/1-514

Type:

SNAC Medium

Principal Investigator:

Jonas Björk

Affiliation:

Linköpings universitet

Start Date:

2017-11-29

End Date:

2018-12-01

Primary Classification:

10407: Theoretical Chemistry

Secondary Classification:

10402: Physical Chemistry

Tertiary Classification:

10304: Condensed Matter Physics

Allocation

Abstract

The project concerns the study of organic nanostructures formed though on-surface synthesis. On-surface synthesis is becoming an increasingly popular approach for creating atomically precise organic nanostructures, through the coupling of molecular building blocks on surfaces, with great relevance and prospects in for example organic electronics. However, very little is known about the on-surface reactions, which makes them arduous to control. Fundamental understanding of the underlying on-surface reactions is therefore of great interest. Furthermore, knowledge is needed for how the structures of the formed materials govern their electronic properties and how the electronic properties of the materials are affected by defects. Such understanding would guide the development of materials with specific electronic properties. The proposed project is divided into two parts. In the first part of the project we will investigate the formation mechanisms of organic nanostructures from molecular building blocks, providing insight into the underlying surface chemistry of these reactions. This part of the project will be carried out by density functional theory combined with methods for studying reaction paths, such as the Nudged Elastic Band and Dimer methods, as implemented in the VASP code. In the second part of the project we will investigate electronic properties of organic nanostructures. This will also to a large extent be performed by density functional theory with the VASP code. Furthermore, we will use our own code BandUP, which allows for band structure calculations of defective materials, with respect to their primitive unit cell by so-called band unfolding techniques. The BandUP code has been developed and well tested on Triolith.